Measurement, analysis and modeling of centrifugal compressor flow for low pressure ratios

Author:

Leufvén Oskar1,Eriksson Lars1

Affiliation:

1. Division of Vehicular Systems, Department of Electrical Engineering, Linköping University, Linköping, Sweden

Abstract

Increasingly stringent emission legislation combined with consumer performance demands has driven the development of downsized engines with complex turbocharger arrangements. To handle the complexity, model-based methods have become a standard tool, and these methods need models that are capable of describing all operating modes of the systems. The models should also be easily parametrized and enable extrapolation. Both single- and multi-stage turbo systems can operate with a pressure drop over their compressors, both stationary and transient. The focus here is to develop models that can describe centrifugal compressors that operate in both normal region and restriction region from standstill to maximum speed. The modeling results rely on an analysis of 305 automotive compressor maps, whereof five contain measured restriction operation and two contain measured standstill characteristic. A standstill compressor is shown to choke at a pressure ratio of approximately 0.5, and the corresponding choking corrected mass flow being approximately 50% of the compressor maximum flow capacity. Both choking pressure ratio and flow are then shown to increase with corrected speed, and the choking pressure ratio is shown to occur at pressure ratios larger than unity for higher speeds. Simple empirical models are proposed and shown to be able to describe high flow and pressure ratios down to choking conditions well. A novel compressor flow model is proposed and validated to capture the high flow asymptote well, for speeds from standstill up to maximum.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3