Evaluation of strategies to optimize engine efficiency and NOx emissions with the synthetic diesel fuel oxymethylene ether

Author:

Pöllmann Simon1ORCID,Härtl Martin1,Jaensch Malte1ORCID,Wachtmeister Georg1

Affiliation:

1. Chair of Sustainable Mobile Drivetrains, Technical University of Munich, Munich, Germany

Abstract

The use of CO2-neutral synthetic fuels in internal combustion engines contributes to achieving climate targets. Since their combustion is still associated with pollutant emissions, current research is focusing on minimizing harmful emissions, as well as on improving the efficiency of the combustion. The soot-free combustion of the synthetic diesel fuel oxymethylene ether (OME) opens up new scopes for reducing the remaining pollutants, particularly nitrogen oxides (NOX). Catalytic aftertreatment of NOX is costly and may lead to the generation of further emissions such as nitrous oxide, making it necessary to further investigate engine-internal approaches of NOX reduction. This work shows the influence of various in-engine measures on emissions and efficiency for OME and hydrogenated vegetable oil (HVO) as paraffinic diesel fuel, performed on a 1.75 l single-cylinder research engine. An injector variation was carried out for OME to compensate for the reduced lower heating value by a higher nozzle flow rate, which increases efficiency, but also NOX emissions. The examination of the measures of increasing exhaust gas recirculation, lowering rail pressure, Miller valve timing and high compression ratio shows a significant reduction in nitrogen oxide emissions in each case. At the same time, there is an improvement in indicated efficiency for Miller valve timing and high compression ratio, and with OME, in contrast to HVO, also by reducing the rail pressure. With HVO, each measure increases particulate number by up to several orders of magnitude. For OME, none of the measures resulted in a deterioration of the low particulate emissions, which allows an intensified application and combination of the measures. For example, the simultaneous application of higher compression, early intake closing and decreased injection pressure reduces nitrogen oxide emissions by more than two-thirds and improves efficiency by 5% without increasing particulate emissions.

Funder

Bayerische Forschungsstiftung

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3