Affiliation:
1. CMT – Clean Mobility & Thermofluids, Universitat Politècnica de València, València, Spain
2. Sandia National Laboratories, Livermore, CA, USA
Abstract
The solution to the dilemma of carbon footprint of internal combustion engines and pollutant emissions is necessary for the survival of this technology. In this context, alternative fuels have shown great potential in terms of achieving cleaner combustion and compliance with ever increasing pollutant emissions regulations. This work is focused on the study of two promising alternative fuels as Hydrotreated vegetable oil (HVO), which is a biofuel and Dimethoxymethane also termed as OME1, which is an e-fuel. A comprehensive numerical approach has been followed to study these fuels. Primarily a compact reaction mechanism having 121 species and 678 reactions has been developed which can be utilized to perform 3D CFD simulations of blends of these fuels. Secondly, a detailed numerical investigation including combustion and emissions analysis has been carried out. Results show that the developed mechanism is able to offer predictions, which match the experimental behavior observed in various combustion parameters and thus can be utilized for compression ignition engine applications involving these promising fuels. In addition, the numerical analysis also highlights that a reduction of 50% and 37% in terms soot and NOx emissions respectively can be achieved by addition of 30% OME1 in the blend containing HVO, suggesting that these blends can be utilized in unmodified CI engines to break the soot-NOx tradeoff without significantly penalizing the energy loss.
Funder
universitat politècnica de valència
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献