A predictive Livengood–Wu correlation for two-stage ignition

Author:

Pan Jiaying12,Zhao Peng13,Law Chung K14,Wei Haiqiao2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA

2. State Key Laboratory of Engines, Tianjin University, Tianjin, China

3. Department of Mechanical Engineering, Oakland University, Rochester, MI, USA

4. Center for Combustion Energy, Tsinghua University, Beijing, China

Abstract

The Livengood–Wu correlation has been widely used to predict the state of auto-ignition in internal combustion engines, although its application to two-stage ignition processes remains unresolved. In this study, the original Livengood–Wu integral is extended to such two-stage ignition process and applied to simulations of typical operations within homogeneous charge compression ignition engines. Specifically, based on recent understanding of the global and detailed kinetics of low-temperature chemistry leading to ignition, simplified Arrhenius-based global reaction expressions were developed for both stages of constant-state auto-ignition. It is shown that the original Livengood–Wu integral works well for the first-stage ignition delay, as demonstrated in previous studies. Furthermore, by also accurately describing the cool flame temperature and pressure increment at the end of the first-stage ignition, the second-stage ignition delay can in addition be coupled with the first-stage ignition and predicted satisfactorily with a second integral. This formulation is then applied to extensive homogeneous charge compression ignition engine operation conditions, showing satisfactory predictive capability.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3