End-Gas Autoignition Prediction Using Reverse Livengood-Wu Integral with Ignition Delay Time Equations for Gasoline Surrogate Fuel

Author:

Kuwahara Kazunari1

Affiliation:

1. Osaka Institute of Technology

Abstract

<div class="section abstract"><div class="htmlview paragraph">A high-accuracy knocking or end-gas autoignition prediction model with low computational loads is necessary to develop thermal-efficiency improvement technologies for SI engines efficiently using computational techniques. Livengood-Wu integral has been applied widely as a simple and practical model to predict in-cylinder autoignition timing. In the present study, a high-accuracy model based on Livengood-Wu integral, has been investigated. First, a small set of ignition delay time equations for a premium-gasoline surrogate fuel has been developed, which can reproduce the temperature-, pressure-, equivalence ratio-, and EGR-dependences of ignition delay time under constant-volume condition, produced using a detailed reaction mechanism. Then, Livengood-Wu integral using the ignition delay time equations has been applied to predict in-cylinder autoignition timing produced using the detailed reaction mechanism. Numerical analyses have found X of Livengood-Wu integral and error factors in the prediction. Heat can represent X of Livengood-Wu integral. Last, iterative reverse Livengood-Wu integral using an error correction equation has been proposed, which can decrease the error in the prediction using normal Livengood-Wu integral.</div></div>

Publisher

Society of Automotive Engineers of Japan

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3