Influence of intake geometry variations on in-cylinder flow and flow–spray interactions in a stratified direct-injection spark-ignition engine captured by time-resolved particle image velocimetry

Author:

Stiehl Roman1,Bode Johannes1,Schorr Jürgen2,Krüger Christian2,Dreizler Andreas1,Böhm Benjamin3

Affiliation:

1. Fachgebiet Reaktive Strömungen und Messtechnik, Technische Universität Darmstadt, Darmstadt, Germany

2. Daimler AG, Stuttgart, Germany

3. Fachgebiet Energie- und Kraftwerkstechnik, Technische Universität Darmstadt, Darmstadt, Germany

Abstract

Time-resolved particle image velocimetry and Mie-scattering of fuel droplets at 16 kHz were used to capture simultaneously the temporal evolution of the in-cylinder flow field and spray formation within a direct-injection spark-ignition engine. The engine was operated in stratified combustion mode, with stratified mixtures created by a triple injection late in the compression stroke. The impact of geometric variation of the intake port on in-cylinder flow and flow–spray interactions was investigated, focusing on the second injection, since it provides ignitable mixtures at the time of ignition and is subject to strong fluctuations, rather than the first injection, which is very reproducible. Flow field statistics conditioned on the spray shape of the second injection revealed regions with macroscopic cycle-to-cycle flow variations, which correlated with the spray for all recorded cycles. The flow–spray interaction was traced back to before the first injection using correlation analysis, which revealed that cycle-to-cycle fluctuations of the large-scale tumble vortex had a big impact on the spray shape of the second injection, while the first injection was unaffected. This indicates that the origin of the spray fluctuations may be during intake. Despite significant flow modifications due to the intake port geometry variation, fluctuation levels of the second injection were the same for both geometries, that is, spray fluctuations were not sensitive to the geometric change.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3