Impact of Mixture Inhomogeneity and Ignition Location on Early Flame Kernel Evolution in a Direct-Injection Hydrogen-Fueled Heavy-Duty Optical Engine

Author:

Laichter J.1,Kaiser S. A.1,Rajasegar R.2,Srna A2

Affiliation:

1. University of Duisburg-Essen, Institute for Energy and Mater

2. Sandia National Laboratories, Combustion Research Facility

Abstract

<div class="section abstract"><div class="htmlview paragraph">An optically accessible hydrogen-fueled, heavy-duty engine was used to investigate the impact of mixture formation on the early flame kernel propagation and the resulting combustion cyclic variability. Direct injection from a centrally mounted medium-pressure outward-opening hollow-cone injector created a fuel- air mixture with a global equivalence ratio of 0.33. The engine was operated at 1200 RPM with dry air at an intake pressure and temperature of 1.0 bar and 305 K, respectively. The charge was ignited at three different locations using focused-laser ignition to allow for undisturbed flame evolution, and the fuel injection timing and injection pressure were varied to influence the mixture inhomogeneity. High-speed OH* chemiluminescence imaging through a piston-crown window allowed for tracking the flame evolution while fluorescence imaging of anisole seeded into the hydrogen fuel provided two-dimensional information on the mixture distribution around the ignition location just before ignition. The results reveal that primarily the in-cylinder bulk-flow motion in conjunction with injection-induced flow influence the early flame kernel evolution. Despite the ultra-lean conditions, combustion was fast and fairly stable under most operating conditions, but the turbulence and inhomogeneity induced by fuel injection during the compression stroke significantly accelerated combustion compared to early injection during the intake stroke. Operating points with highly variable fuel/air mixture distribution near the ignition location exhibited increased cyclic variability with a few misfires.</div></div>

Publisher

Society of Automotive Engineers of Japan

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3