DoE-ML guided optimization of an active pre-chamber geometry using CFD

Author:

Silva Mickael1ORCID,Mohan Balaji2,Badra Jihad2,Zhang Anqi3,Hlaing Ponnya1ORCID,Cenker Emre2,AlRamadan Abdullah S.2,Im Hong G1

Affiliation:

1. King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

2. Transport Technologies Division, Research and Development Center, Saudi Aramco, Dhahran, Saudi Arabia

3. Transport Technologies Division, Aramco Research Center, Detroit, MI, USA

Abstract

An optimized active pre-chamber geometry was obtained by combining computational fluid dynamics (CFD) and machine learning (ML). A heavy-duty engine operating with methane under lean conditions was considered. The combustion process was modeled with a multi-zone well-stirred reactor (MZ-WSR) with a skeletal methane oxidation mechanism. The simulations were run for a complete cycle. For the optimization study, the pre-chamber was parametrized; six independent and three dependent variables were considered, while the volume was kept constant. Three hundred pre-chamber designs were generated, and a one-shot design of experiments (DoE) optimization was first considered. A merit function was adopted to rank the designs, and an optimum design was found from the DoE results, which yielded considerable improvements in merit ranking, considering fuel consumption, engine-out emissions, noise, and safety; secondly, machine learning algorithms were trained by utilizing the DoE results aiming at finding a globally optimum geometry for the considered operating condition. Five sequential iterations were performed, and the ML algorithms were capable of proposing a new design with superior performance compared to the best DoE.

Funder

saudi aramco

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3