Attempt of estimating flow characteristics from wall heat fluxes measured using a three-point micro-electro-mechanical systems sensor

Author:

Dejima Kazuhito1ORCID,Nakabeppu Osamu2

Affiliation:

1. The University of Shiga Prefecture, Hikone, Japan

2. Meiji University, Kawasaki, Japan

Abstract

In this study, it was attempted to estimate the flow characteristics in the vicinity of an engine inner wall from the instantaneous local heat fluxes measured using a micro-electro-mechanical systems sensor. As the sensor has three resistance temperature detectors with a size of 315 µm fabricated on a circumference with a diameter of 900 µm in rotational symmetry, it can measure local heat flux on the equivalent scale of the turbulence of in-cylinder flow. The advective velocity and turbulent eddy scale were estimated from heat flux fluctuations using a cross-correlation analysis, and these were compared with results of particle image velocimetry performed under motored operation conditions. As a result, it was found that the micro-electro-mechanical systems sensor has the potential to detect the gas side information such as the wall parallel flow velocity. Although further verification of the physical meanings of the estimated characteristics is necessary, the micro-electro-mechanical systems sensor will become a powerful tool for engine diagnostics.

Funder

Council for Science, Technology and Innovation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3