NOx emissions in direct injection diesel engines: Part 2: model performance for conventional, prolonged ignition delay, and premixed charge compression ignition operating conditions

Author:

Brückner Clemens1,Kyrtatos Panagiotis12,Boulouchos Konstantinos1

Affiliation:

1. Aerothermochemistry and Combustion Systems Laboratory, ETH Zurich, Zurich, Switzerland

2. Vir2sense GmbH, Zurich, Switzerland

Abstract

Investigations from recent years have shown that at operating conditions characterized by long ignition delays and resulting large proportions of premixed combustion, the NOx emission trend does not correspond to the (usually) postulated correlation with an appropriately defined (adiabatic) burnt flame temperature. This correlation, however, is the cornerstone of most published NOx models for direct injection diesel engines. In this light, a new phenomenological NOx model has been developed in Brückner et al. (Part 1), which considers NOx formation from products of premixed and diffusion combustion and accounts for compression heating of post-flame gases, and describes NOx formation by thermal chemistry. In this study (Part 2), the model is applied to predict NOx emissions from two medium-speed direct injection diesel engines of different size and at various operating conditions. Single parameter variations comprising sweeps of injection pressure, start of injection, load, exhaust gas recirculation rate, number of injections, and end-of-compression temperature are studied on a single-cylinder engine. In addition, different engine configurations (valve timing, turbocharger setup) and injection parameters of a marine diesel engine are investigated. For both engines and all parameter variations, the model prediction shows good agreement. Most notably, the model captures the turning point of the NOx emission trend with increasing ignition delay (first decreasing, then increasing NOx) for both engines. The differentiation in the physical treatment of the products of premixed and diffusion with increasing ignition delay showed to be essential for the model to capture the trend-reversal. Specifically, the model predicted that peak NOx formation rates in diffusion zones decrease with increasing ignition delay, whereas for the same change in ignition delay, peak formation rates in premixed zones increase. This is caused by the high energy release in short time, causing a strong compression of existing premixed combustion product zones that mix at a slower rate and have less time to mix, significantly increasing their temperature. In contrast, the model under-predicts NOx emissions for very low oxygen concentrations, in particular below 15 vol.%, which is attributed to the simple thermal NOx kinetic mechanism used. It is concluded that the new model is able to predict NOx emissions for conventional diesel combustion and for long ignition delay operating conditions, where a substantial amount of heat is released in premixed mode.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3