Affiliation:
1. Department of Engineering Science, University of Oxford, Oxford, UK
Abstract
This article considers the application and refinement of artificial neural network methods for the prediction of NO x emissions from a high-speed direct injection diesel engine over a wide range of engine operating conditions. The relative computational cost and performance of two backpropagation algorithms, Levenberg–Marquardt and Bayesian regularization, for this application are compared, with the Levenberg–Marquardt algorithm demonstrating a significant cost advantage. This work also assesses the performance of two alternative filtering approaches, a p-value test and the Pearson correlation coefficient, for reducing the required number of input variables to the model. The p-value test identified 32 input parameters of significance, whereas the Pearson correlation test highlighted 14 significant parameters while additionally providing a ranking of their relative importance. Finally, the article compares the predictive performance of the models generated by the two filtering methods. Overall, both models show good agreement to the experimental data with the model created using the Pearson correlation test showing improved performance in the low-NO x region.
Subject
Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献