Impact of methane energy fraction on emissions, performance and cyclic variability in low-load dual fuel combustion at early injection timings

Author:

Jha Prabhat R1,Krishnan Sundar R1,Srinivasan Kalyan K1ORCID

Affiliation:

1. Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL, USA

Abstract

This work experimentally examines the effect of methane (a natural gas surrogate) substitution on early injection dual fuel combustion at representative low loads of 3.3 and 5.0 bar BMEPs in a single-cylinder compression ignition engine. Gaseous methane fumigated into the intake manifold at various methane energy fractions was ignited using a high-pressure diesel pilot injection at 310 °CA. For the 3.3 bar BMEP, methane energy fraction sweeps from 50% to 90% were performed; while at 5.0 bar BMEP, methane energy fraction sweeps from 70% to 90% were performed. It is observed that minimum methane energy fraction is limited by maximum pressure rise rate leading to knock and maximum methane energy fraction is limited by a high coefficient of variation in netIMEP, which leads to high cyclic variations. For 3.3 bar BMEP, maximum pressure rise rate is 8 bar/°CA at 50% methane energy fraction while at 5 bar BMEP, it is 12 bar/°CA at 70% methane energy fraction. For 3.3 bar BMEP, engine-out NOx emissions decrease by 43 times when methane energy fraction increases from 50% to 90%, and it decreases by nearly 46 times when methane energy fraction increases from 70% to 90% at 5 bar BMEP. Engine-out unburned hydrocarbon emissions increase by nearly 9 times when methane energy fraction increases from 50% to 90% at 3.3 bar BMEP, and it increases by nearly 5 times when methane energy fraction increases from 70% to 90% at 5.0 bar BMEP. Engine-out carbon monoxide emissions increase by nearly 7 times when methane energy fraction increases from 50% to 90% at 3.3 bar BMEP and by nearly 5 times when methane energy fraction increases from 70% to 90% at 5.0 bar BMEP. In addition, cyclic combustion variations at both loads were analyzed to obtain further insights into the combustion process and identify opportunities to further improve fuel conversion efficiencies at low load operation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3