High-speed diode laser measurements of temperature and water vapor concentration in the intake manifold of a diesel engine

Author:

Jatana Gurneesh S1,Naik Sameer V1,Shaver Gregory M1,Lucht Robert P1

Affiliation:

1. School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA

Abstract

A diode laser–based sensor system, utilizing absorption spectroscopy, has been developed to provide high-speed (5 kHz) simultaneous measurements of temperature and water vapor concentration in the intake manifold of a diesel engine. A fiber-coupled 1.38 µm diode laser was used to probe absorption transitions of water vapor for the high-speed gas temperature and water vapor concentration measurements. Water vapor readily absorbs in the near-infrared region, and distributed feedback diode lasers as well as optics for near-infrared region are readily available because of their use in telecommunications. Fresh charge and combustion products are the only sources of water vapor in an engine’s gas exchange path; therefore, water vapor concentration at various locations in the intake manifold is a useful measure of the recirculated exhaust gas distribution in the intake manifold. Measurements were performed on a six-cylinder Cummins diesel engine using compact fiber optic–coupled connectors. The chosen water vapor absorption transitions provided good absorption strength even without exhaust gas recirculation and water vapor concentration of as low as 0.7 vol.% could be measured with a signal-to-noise ratio of ∼35 leading to very good spectral fits. The sensor output was within 2% of the thermocouple readings and within 10% of the water vapor concentration derived from mean CO2 analyzer measurements for steady-state engine operation. For transient engine operation, the time response of the diode laser sensor was shown to be vastly superior to that of the installed thermocouple and the gas analyzer system.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3