A Mid-Infrared Laser Absorption Sensor for Gas Temperature and Carbon Monoxide Mole Fraction Measurements at 15 kHz in Engine-Out Gasoline Vehicle Exhaust

Author:

Stiborek Joshua W.1,Tancin Ryan J.1,Kempema Nathan J.2,Szente Joseph J.2,Loos Michael J.2,Goldenstein Christopher S.1

Affiliation:

1. Purdue University, Department of Mechanical Engineering, USA

2. Ford Motor Company, Research and Advanced Engineering, USA

Abstract

<div>Quantifying exhaust gas composition and temperature in vehicles with internal combustion engines (ICEs) is crucial to understanding and reducing emissions during transient engine operation. This is particularly important before the catalytic converter system lights off (i.e., during cold start). Most commercially available gas analyzers and temperature sensors are far too slow to measure these quantities on the timescale of individual cylinder-firing events, thus faster sensors are needed. A two-color mid-infrared (MIR) laser absorption spectroscopy (LAS) sensor for gas temperature and carbon monoxide (CO) mole fraction was developed and applied to address this technology gap. Two quantum cascade lasers (QCLs) were fiber coupled into one single-mode fiber to facilitate optical access in the test vehicle exhaust. The QCLs were time-multiplexed in order to scan across two CO absorption transitions near 2013 and 2060 cm<sup>–1</sup> at 15 kHz. This enabled in situ measurements of temperature and CO mole fraction to be acquired at 15 kHz in the engine-out exhaust of a research vehicle (modified production vehicle) with an 8-cylinder gasoline ICE. Three different vehicle tests were characterized with the LAS sensor as follows: (1) cold start with engine idle, (2) warm start with a drive cycle on a chassis dynamometer, and (3) hot start with a drive cycle on a chassis dynamometer. The measurements obtained from the LAS sensor had a time resolution that was three orders of magnitude faster than that of thermocouple and gas analyzer data acquired at the Ford vehicle emissions research laboratory (VERL) in Dearborn, Michigan. This enabled the LAS sensor to resolve high-speed engine dynamics and exhaust gas transients, which the conventional instrumentation could not, thereby providing valuable insight into the evolution of ICE emissions during transient engine operation.</div>

Publisher

SAE International

Subject

Fuel Technology,Automotive Engineering,General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3