Deep reinforcement learning for dynamic control of fuel injection timing in multi-pulse compression ignition engines

Author:

Henry de Frahan Marc T1ORCID,Wimer Nicholas T1,Yellapantula Shashank1,Grout Ray W1

Affiliation:

1. Computational Science Center, National Renewable Energy Laboratory, Golden, CO, USA

Abstract

Conventional compression-ignition (CI) engines have long offered high thermal efficiencies and torque across a wide range of loads, but often require extensive exhaust gas treatment that decreases efficiency to meet ever-increasing emissions regulations. One strategy to decrease emissions is to split the fuel injection into a series of smaller injections. In this paper, we explore a new way of discovering optimal control strategies for the next generation of CI engines using deep reinforcement learning (DRL). We outline a DRL procedure to maximize the weighted reward of engine work while minimizing end-of-cycle NO x emissions. Through the procedure outlined in this paper, we show that the DRL agent is able to reduce NO x emissions threefold while only decreasing network by 2%. We demonstrate the use of transfer learning (TL) across hierarchies of physical models to accelerate the learning process, making this approach feasible for a range of control problems within this space. This paper presents a framework and demonstration for using DRL to design control systems in technology areas such as multi-pulse engine control where a hierarchy of models combined with multi-objective rewards are used for optimal operation.

Funder

U.S. Department of Energy

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3