Affiliation:
1. Computational Science Center, National Renewable Energy Laboratory, Golden, CO, USA
Abstract
Conventional compression-ignition (CI) engines have long offered high thermal efficiencies and torque across a wide range of loads, but often require extensive exhaust gas treatment that decreases efficiency to meet ever-increasing emissions regulations. One strategy to decrease emissions is to split the fuel injection into a series of smaller injections. In this paper, we explore a new way of discovering optimal control strategies for the next generation of CI engines using deep reinforcement learning (DRL). We outline a DRL procedure to maximize the weighted reward of engine work while minimizing end-of-cycle NO x emissions. Through the procedure outlined in this paper, we show that the DRL agent is able to reduce NO x emissions threefold while only decreasing network by 2%. We demonstrate the use of transfer learning (TL) across hierarchies of physical models to accelerate the learning process, making this approach feasible for a range of control problems within this space. This paper presents a framework and demonstration for using DRL to design control systems in technology areas such as multi-pulse engine control where a hierarchy of models combined with multi-objective rewards are used for optimal operation.
Funder
U.S. Department of Energy
Subject
Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献