Modeling wave action effects in internal combustion engine air path systems: comparison of numerical and system dynamics approaches

Author:

Stockar Stephanie1,Canova Marcello1,Guezennec Yann1,Della Torre Augusto2,Montenegro Gianluca2,Onorati Angelo2

Affiliation:

1. Center for Automotive Research, The Ohio State University, USA

2. Department of Energy, Politecnico di Milano, Italy

Abstract

The challenge of continuously improving engine fuel economy and emissions has pushed the automotive industry to adopt more efficient procedures for modeling, system simulation and model-based control. Such procedures require accurate and computationally efficient engine system simulation models that are able to predict the cylinder charge composition and the thermodynamic conditions. To this extent, reduced-order models for unsteady compressible flow systems, namely models derived from the fundamental conservation laws without over-simplifying the topology of the engine air path, are receiving considerable interest for performance simulation and control design. This paper presents a comparative study on modeling approaches for the prediction of one-dimensional unsteady compressible flow in the internal combustion engine air path system. Specifically, the paper compares a well-known second-order, shock-capturing finite-difference scheme with two novel solution methods, namely a finite-volume method and a model-order reduction method. The study aims at evaluating the ability of each method to trade-off the prediction accuracy and robustness with the computation time, in light of potential applications to real-time simulation. This is achieved by increasing the discretization length of each method, and evaluating the accuracy of the predicted response in the time and frequency domain. The characterization of the intake and exhaust flows in the manifolds of a single-cylinder engine is considered as a case study. The results are compared for the three solution methods at different discretization lengths to evaluate the ability of each model to retain accuracy and robustness. The computation times of the different methods are also evaluated. The results presented in this paper establish a clear trade-off between accuracy, stability and computation time for each solution method. This allows one to formulate considerations on the advantages and disadvantages of each method in light of potential applications to engine performance prediction, optimization and control design.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3