A Computational Investigation of Engine Heat Transfer with Ducted Fuel Injection

Author:

Şener Ramazan1ORCID,Nilsen Christopher W2,Biles Drummond E2,Mueller Charles J2

Affiliation:

1. Electronics and Automation Department, Batman University, Batman, Turkey

2. Applied Combustion Research Department, Sandia National Laboratories, Livermore, CA, USA

Abstract

Ducted fuel injection (DFI) is an innovative method that curtails or prevents soot formation in direct-injection compression-ignition engines. DFI uses a simple duct, positioned outside each injector hole, facilitating the fuel/charge gas mixing before ignition. This reduces the equivalence ratio below two, in the autoignition zone, which in turn decreases soot formation. But this method also reduces fuel-conversion efficiency. This study investigates the effects of DFI on in-cylinder heat transfer. Experiments with conventional diesel combustion (CDC) and DFI were performed at four different dilution levels. Computational fluid dynamics (CFD) simulations were carried out at conditions matching those of the experiments, and the simulations were validated by the experimental data. The CFD simulations enabled to examine of in-cylinder heat release and temperature distributions. The heat transfer to the piston, head, and cylinder was investigated. The results show that DFI increased the heat transfer to the walls compared to CDC under the same conditions. This could help explain why DFI has been observed to reduce fuel-conversion efficiency by approximately 1% (absolute) relative to CDC under certain conditions. The efficiency loss typically decreases with dilution, such that DFI can improve fuel-conversion efficiencies relative to CDC at higher dilution levels.

Funder

Sandia National Laboratories

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3