Determining tolerance requirements for spray-duct alignment in ducted fuel injection

Author:

Şener Ramazan1ORCID,Nyrenstedt Gustav2,Baumgard Kirby J.2,Mueller Charles J.2

Affiliation:

1. Marine Engineering Department, Bandirma Onyedi Eylul University, Balikesir, Turkey

2. Sandia National Laboratories, Applied Combustion Research Department, Livermore, CA, USA

Abstract

Several ducted fuel injection (DFI) studies have highlighted the importance of accuracy in aligning the duct axis with that of its corresponding spray for optimal effectiveness, as misalignment adversely impacts the method’s performance. The need for accurate alignment could lead to added manufacturing complexity via tighter tolerances. This study systematically explores cases of horizontal, vertical, and rotational misalignment, analyzing their respective effects on DFI performance. Vertical and horizontal misalignments at the duct inlet plane were varied at magnitudes of 6.25%, 12.5%, and 25.0% of the duct diameter, corresponding to 0.125, 0.25, and 0.5 mm, respectively. Rotational misalignments were set at 1°, 2°, and 4°, corresponding to 3.65%, 7.30%, and 14.6%, respectively, of the duct diameter at its inlet plane. The investigation yields spray-duct alignment tolerance limits and highlights the influence of misalignment direction on emissions due to the interactions with swirl and squish inside the combustion chamber. The results indicate that the tolerance limits for the alignment are within 4° and 0.5 mm relative to the geometrically aligned position. If the misalignment exceeds 4°of rotation or 0.5 mm in the horizontal direction, the beneficial effects on soot reduction using this method are no longer observed. The findings contribute to an understanding that can be used to optimize DFI for cleaner and more efficient combustion in compression-ignition engines.

Funder

Sandia National Laboratories

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3