An experimental study of the injection strategies on engine performance of the butanol/biodiesel dual-fuel Intelligent Charge Compression Ignition mode

Author:

Zhao Wenbin1,Zhang Yaoyuan1,Huang Guan1,Li Zilong1,Qian Yong1,He Zhuoyao1,Lu Xingcai1ORCID

Affiliation:

1. Key Laboratory for Power Machinery and Engineering of M.O.E., Shanghai Jiao Tong University, Shanghai, PR China

Abstract

Intelligent Charge Compression Ignition (ICCI) combustion mode is a novel dual-fuel combustion strategy that has been proposed recently. In ICCI combustion mode, two fuels with different reactivity are directly injected during the intake stroke and compression stroke, respectively, to achieve flexible reactivity gradient and equivalence ratio stratification. In this study, experiments were conducted on a single-cylinder diesel engine to investigate the effects of butanol direct injection strategies on the engine running with ICCI combustion mode at a constant speed of 1500 r/min and medium load. Results showed that ICCI combustion mode was composed of premixed heat release and diffusion heat release. In compare, the percentage of premixed heat release was higher than the diffusion heat release. With fixed biodiesel direct injection timing (SOI2), retarding butanol single injection timing (SOI1) would delay combustion phasing while not distinctively affect ignition timing. SOI1 showed significant effect on the thermal efficiency and engine emissions. Indicated thermal efficiency (ITE) decreased at first and then slightly increased with retarding of SOI1, while the nitrogen oxides (NOx) emissions were always at low levels. As the butanol second direct injection timing (SOI1-2) retard and the corresponding energy ratio increase, more butanol entered into the crevice/squish regions, leading to the increase of unburned hydrocarbon (HC) and carbon monoxide (CO) emissions. EGR strategy helps to significantly reduce NOx emissions without affecting ITE although penalized HC and CO emissions are resulted in. The optimum butanol direct injection strategies were butanol single direct injection, especially in the early SOI1, in which the thermal efficiency was higher and emissions were at very low levels (NOx  < 0.4 g/kW h).

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3