Assessing the optimum combustion under constrained conditions

Author:

Olmeda Pablo1,Martín Jaime1ORCID,Novella Ricardo1,Blanco-Cavero Diego1ORCID

Affiliation:

1. CMT-Motores Térmicos, Universitat Politècnica de València, Valencia, Spain

Abstract

This work studies the optimum heat release law of a direct injection diesel engine under constrained conditions. For this purpose, a zero-dimensional predictive model of a diesel engine is coupled to an optimization tool used to shape the heat release law in order to optimize some outputs (maximize gross indicated efficiency and minimize NO x emissions) while keeping several restrictions (mechanical limits such as maximum peak pressure and maximum pressure rise rate). In a first step, this methodology is applied under different heat transfer scenarios without restrictions to evaluate the possible gain obtained through the thermal isolation of the combustion chamber. Results derived from this study show that heat transfer has a negative effect on gross indicated efficiency ranging from −4% of the fuel energy ( ṁfHv), at high engine speed and load, up to −8% ṁfHv, at low engine speed and load. In a second step, different mechanical limits are applied resulting in a gross indicated efficiency worsening from −1.4% ṁfHv up to −2.8% ṁfHv compared to the previous step when nominal constraints are applied. In these conditions, a temperature swing coating that covers the piston top and cylinder head is considered obtaining a maximum gross indicated efficiency improvement of +0.5% ṁfHv at low load and engine speed. Finally, NO x emissions are also included in the optimization obtaining the expected tradeoff between gross indicated efficiency and NO x. Under this optimization, cutting down the experimental emissions by 50% supposes a gross indicated efficiency penalty up to −8% ṁfHv when compared to the optimum combustion under nominal limits, while maintaining the experimental gross indicated efficiency allows to reduce the experimental emissions 30% at high load and 65% at low load and engine speed.

Funder

Ministry of Science and Innovation of Spain

Universitat Politècnica de València

Government of Spain

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3