Studying the effects of manifold pressure boosting and EGR on combustion and NOx emission of hydrogen-fueled SI engine

Author:

Pandey Jayashish Kumar12ORCID,GN Kumar1

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, India

2. Department of Aeronautical and Automobile Engineering, Manipal Institute of Technology, Manipal, Udupi, India

Abstract

Aiming to the global energy insecurity due to extensive dependence on fossil fuels, hydrogen is supposed to provide relief by researchers. However, employed to combustion engines, this green fuel leaves hazardous NOx and limits output due to low volumetric energy content. Hence, improving operating parameters like compression ratio and manifold pressure, and NOx mitigating technique like EGR may prove a boon. Therefore, in the present study, combustion and NOx emission behavior of the SI-engine is studied under variable manifold air pressure (MAP) (up to 130 kPa) and EGR (up to 15%) at compression ratio 14:1. The outcomes shows the flame development increased by 1.24%, while flame propagation is increased by 1.63% by MAP boosting due to increased air and fuel supply. Cylinder pressure and heat-release rate (HRR) are also surged due to the increased fuel supply to maintain excess-air ratio (λ). However, peak cylinder pressure is retarded due to elongated combustion. The exhaust gas temperature (EGT) is increased by 19.4%, while elevated Tmax is observed to shoot up NOx by 40%. Combustion in improved at low EGR due to reduced λ, and also the specific NOx. At higher EGR rate deteriorated combustion due to increased heterogeneity by high dilution, increasing combustion duration, cooling losses and reducing cylinder pressure, Tmax and EGT. A 9.33% and 5.67% increase in CA10 and CA10–90 respectively is observed for 130 kPa at 15% EGR than no EGR. The rapid reduction in oxygen and higher heterogeneity reducing residence time, resulted in rapid drop (33% at N/A to 42.68% at 130 kPa for 15% EGR) in NOx by EGR. The coefficient variation is reduced by boosting MAP but increased severely at higher EGR, which restricts operating EGR rate.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3