A personalized search using a semantic distance measure in a graph-based ranking model

Author:

Daoud Mariam1,Tamine Lynda1,Boughanem Mohand1

Affiliation:

1. IRIT, Paul Sabatier University, France

Abstract

The goal of search personalization is to tailor search results to individual users by taking into account their profiles, which include their particular interests and preferences. As these latter are multiple and change over time, personalization becomes effective when the search process takes into account the current user interest. This article presents a search personalization approach that models a semantic user profile and focuses on a personalized document ranking model based on an extended graph-based distance measure. Documents and user profiles are both represented by graphs of concepts issued from predefined web ontology, namely, the Open Directory Project directory (ODP). Personalization is then based on reordering the search results of related queries according to a graph-based document ranking model. This former is based on using a graph-based distance measure combining the minimum common supergraph and the maximum common subgraph between the document and the user profile graphs. We extend this measure in order to take into account a semantic recovery at exact and approximate concept-level matching. Experimental results show the effectiveness of our personalized graph-based ranking model compared with Yahoo and different personalized ranking models performed using classical graph-based measures or vector-space similarity measures.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Reference43 articles.

1. Gowan J. A multiple model approach to personalised information access. Master thesis in computer science, University of College Dublin, 2003.

2. Personalized web search for improving retrieval effectiveness

3. Ontology-Based Information Behaviour to Improve Web Search

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3