Evaluation in Contextual Information Retrieval

Author:

Tamine Lynda1ORCID,Daoud Mariam2

Affiliation:

1. University of Toulouse, IRIT Laboratory, Toulouse, France

2. Seneca College of Applied Arts and Technology, Toronto, Canada

Abstract

Context such as the user’s search history, demographics, devices, and surroundings, has become prevalent in various domains of information seeking and retrieval such as mobile search, task-based search, and social search. While evaluation is central and has a long history in information retrieval, it faces the big challenge of designing an appropriate methodology that embeds the context into evaluation settings. In this article, we present a unified summary of a wide range of main and recent progress in contextual information retrieval evaluation that leverages diverse context dimensions and uses different principles, methodologies, and levels of measurements. More specifically, this survey article aims to fill two main gaps in the literature: First, it provides a critical summary and comparison of existing contextual information retrieval evaluation methodologies and metrics according to a simple stratification model; second, it points out the impact of context dynamicity and data privacy on the evaluation design. Finally, we recommend promising research directions for future investigations.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Contextualizing Meta-Learning via Learning to Decompose;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-01

2. Data Context-Aware Web Information Retrieval;2023 XLIX Latin American Computer Conference (CLEI);2023-10-16

3. The Moderating Role of Personal Innovativeness in Tourists’ Intention to Use Web 3.0 Based on Updated Information Systems Success Model;Sustainability;2022-10-26

4. Semantic Representation of a Geo-Social User Profile for a Personalised Information Retrieval;Journal of Information & Knowledge Management;2021-08-31

5. Search Interface Design and Evaluation;Foundations and Trends® in Information Retrieval;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3