QSem: A novel question representation framework for question matching over accumulated question–answer data

Author:

Hao Tianyong1,Qu Yingying2

Affiliation:

1. Guangdong University of Foreign Studies, People’s Republic of China

2. The University of New South Wales, Australia

Abstract

This paper proposes a novel question representation framework to assist automated question answering through reusing accumulated question–answer data. The framework, named QSem, defines three types of question words – question-target words, user-oriented words and irrelevant words, along with semantic patterns, for representing a question. The question word types are semantically labelled by a pre-defined ontology to enrich the semantic representation of questions. The semantic patterns through equivalent pattern linking enhance normal structure matching aiming at improving question matching performance. We trained QSem on 400 randomly selected questions with semantic patterns and obtained optimized parameters. After that, 5000 questions from our system were tested and the precision of question matching was between 0.71 and 0.93 with respect to various generators, indicating the stability of the approach. We further compared our approach with Cosine similarity, WordNet-based semantic similarity and IBM translation model on a standard TREC dataset containing 5536 questions. The results presented that our approach achieved best performance with mean reciprocal rank increased by 7.2% and accuracy increased by 7.5% on average, demonstrating the effectiveness of the approach.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pseudo-siamese networks with lexicon for Chinese short text matching;Journal of Intelligent & Fuzzy Systems;2021-12-16

2. A Mobile-Based Question-Answering and Early Warning System for Assisting Diabetes Management;Wireless Communications and Mobile Computing;2018-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3