Affiliation:
1. School of Computer Science and Engineering, Central South University, Changsha, China
Abstract
Short text matching is one of the fundamental technologies in natural language processing. In previous studies, most of the text matching networks are initially designed for English text. The common approach to applying them to Chinese is segmenting each sentence into words, and then taking these words as input. However, this method often results in word segmentation errors. Chinese short text matching faces the challenges of constructing effective features and understanding the semantic relationship between two sentences. In this work, we propose a novel lexicon-based pseudo-siamese model (CL2 N), which can fully mine the information expressed in Chinese text. Instead of utilizing a character-sequence or a single word-sequence, CL2 N augments the text representation with multi-granularity information in characters and lexicons. Additionally, it integrates sentence-level features through single-sentence features as well as interactive features. Experimental studies on two Chinese text matching datasets show that our model has better performance than the state-of-the-art short text matching models, and the proposed method can solve the error propagation problem of Chinese word segmentation. Particularly, the incorporation of single-sentence features and interactive features allows the network to capture the contextual semantics and co-attentive lexical information, which contributes to our best result.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献