Affiliation:
1. Jeppiaar Institute of Technology, India
2. RMD Engineering College, India
Abstract
Large and complex data becomes a valuable resource in biomedical discovery, which is highly facilitated to increase the scientific resources for retrieving the helpful information. However, indexing and retrieving the patient information from the disparate source of big data is challenging in biomedical research. Indexing and retrieving the patient information from big data is performed using the MapReduce framework. In this research, the indexing and retrieval of information are performed using the proposed Jaya-Sine Cosine Algorithm (Jaya–SCA)-based MapReduce framework. Initially, the input big data is forwarded to the mapper randomly. The average of each mapper data is calculated, and these data are forwarded to the reducer, where the representative data are stored. For each user query, the input query is matched with the reducer, and thereby, it switches over to the mapper for retrieving the matched best result. The bilevel matching is performed while retrieving the data from the mapper based on the distance between the query. The similarity measure is computed based on the parametric-enabled similarity measure (PESM), cosine similarity and the proposed Jaya–SCA, which is the integration of the Jaya algorithm and the SCA. Moreover, the proposed Jaya–SCA algorithm attained the maximum value of F-measure, recall and precision of 0.5323, 0.4400 and 0.6867, respectively, using the StatLog Heart Disease dataset.
Subject
Library and Information Sciences,Information Systems
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献