Efficient indexing and retrieval of patient information from the big data using MapReduce framework and optimisation

Author:

Merlin N.R. Gladiss1ORCID,Prem. M Vigilson2

Affiliation:

1. Jeppiaar Institute of Technology, India

2. RMD Engineering College, India

Abstract

Large and complex data becomes a valuable resource in biomedical discovery, which is highly facilitated to increase the scientific resources for retrieving the helpful information. However, indexing and retrieving the patient information from the disparate source of big data is challenging in biomedical research. Indexing and retrieving the patient information from big data is performed using the MapReduce framework. In this research, the indexing and retrieval of information are performed using the proposed Jaya-Sine Cosine Algorithm (Jaya–SCA)-based MapReduce framework. Initially, the input big data is forwarded to the mapper randomly. The average of each mapper data is calculated, and these data are forwarded to the reducer, where the representative data are stored. For each user query, the input query is matched with the reducer, and thereby, it switches over to the mapper for retrieving the matched best result. The bilevel matching is performed while retrieving the data from the mapper based on the distance between the query. The similarity measure is computed based on the parametric-enabled similarity measure (PESM), cosine similarity and the proposed Jaya–SCA, which is the integration of the Jaya algorithm and the SCA. Moreover, the proposed Jaya–SCA algorithm attained the maximum value of F-measure, recall and precision of 0.5323, 0.4400 and 0.6867, respectively, using the StatLog Heart Disease dataset.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Face Image Encryption Using Fuzzy K2DPCA and Chaotic MapReduce;Tehnicki vjesnik - Technical Gazette;2024-08-15

2. Foreign Language Anxiety of College English Teachers and Their Countermeasures;International Journal of Cognitive Informatics and Natural Intelligence;2023-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3