Collaborative filtering using non-negative matrix factorisation

Author:

Aghdam Mehdi Hosseinzadeh12,Analoui Morteza2,Kabiri Peyman2

Affiliation:

1. Payame Noor University, Iran

2. Iran University of Science and Technology, Iran

Abstract

Collaborative filtering is a popular strategy in recommender systems area. This approach gathers users’ ratings and then predicts what users will rate based on their similarity to other users. However, most of the collaborative filtering methods have faced problems such as sparseness and scalability. This paper presents a non-negative matrix factorisation method to alleviate these problems via decomposing rating matrix into user matrix and item matrix. This method tries to find two non-negative user matrix and item matrix whose product can well estimate the rating matrix. This approach proposes updated rules to learn the latent factors for factorising the rating matrix. The proposed method can estimate all the unknown ratings and its computational complexity is very low. Empirical studies on benchmark datasets show that the proposed method is more tolerant of the sparseness and scalability problems.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3