Affiliation:
1. Department of Computer Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
Abstract
Social tagging has revolutionized the social and personal experience of users across numerous web platforms by enabling the organizing, managing, sharing and searching of web data. The extensive amount of information generated by tagging systems can be utilized for recommendation purposes. However, the unregulated creation of social tags by users can produce a great deal of noise and the tags can be unreliable; thus, exploiting them for recommendation is a nontrivial task. In this study, a new recommender system is proposed based on the similarities between user and item profiles. The approach applied is to generate user and item profiles by discovering tag patterns that are frequently generated by users. These tag patterns are categorized into irrelevant patterns and relevant patterns which represent diverse user preferences in terms of likes and dislikes. Furthermore, presented here is a method for translating these tag-based profiles into semantic profiles by determining the underlying meaning(s) of the tags, and mapping them to semantic entities belonging to external knowledge bases. To alleviate the cold start and overspecialization problems, semantic profiles are enriched in two phases: (a) using a semantic spreading mechanism and then (b) inheriting the preferences of similar users. Experiment indicates that this approach not only provides a better representation of user interests, but also achieves a better recommendation result when compared with existing methods. The performance of the proposed recommendation method is investigated in the face of the cold start problem, the results of which confirm that it can indeed remedy the problem for early adopters, hence improving overall recommendation quality.
Subject
Library and Information Sciences,Information Systems
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献