A generic metamodel for data extraction and generic ontology population

Author:

Chasseray Yohann1ORCID,Barthe-Delanoë Anne-Marie1ORCID,Négny Stéphane1,Le Lann Jean-Marc1

Affiliation:

1. Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France

Abstract

As the next step in the development of intelligent computing systems is the addition of human expertise and knowledge, it is a priority to build strong computable and well-documented knowledge bases. Ontologies partially respond to this challenge by providing formalisms for knowledge representation. However, one major remaining task is the population of these ontologies with concrete application. Based on Model-Driven Engineering principles, a generic metamodel for the extraction of heterogeneous data is presented in this article. The metamodel has been designed with two objectives, namely (1) the need of genericity regarding the source of collected pieces of knowledge and (2) the intent to stick to a structure close to an ontological structure. As well, an example of instantiation of the metamodel for textual data in chemistry domain and an insight of how this metamodel could be integrated in a larger automated domain independent ontology population framework are given.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A generic hybrid method combining rules and machine learning to automate domain independent ontology population;Engineering Applications of Artificial Intelligence;2024-07

2. Knowledge Management in the Context of Toxicity Testing;From Theory of Knowledge Management to Practice;2023-08-16

3. Knowledge extraction from textual data and performance evaluation in an unsupervised context;Information Sciences;2023-06

4. Ontology Population from French Classified Ads;Graph-Based Representation and Reasoning;2023

5. Formalization of Ontology Conceptualizations Using Model Transformation;International Journal of Information System Modeling and Design;2022-09-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3