WisRule: First cognitive algorithm of wise association rule mining

Author:

Khan Salma1ORCID,Shaheen Muhammad1

Affiliation:

1. Faculty of Engineering & Information Technology, Foundation University Islamabad, Pakistan

Abstract

This article proposes a new algorithm for a newly emerging domain wisdom mining that claims to extract wisdom from data. Association rule mining is one of the dominant data mining techniques based on which a new algorithm called WisRule is proposed that generates both positive and negative association rules. These rules can be used for decision-making with less influence from a specialist. The existing algorithms of association rule extraction are based on the frequency of an itemset, which was introduced into the Apriori algorithm for the first time. In these algorithms, those itemsets are converted to the rules of the form Antecedent ⇒ Consequent that qualify the threshold of support, confidence and similar other measures. WisRule is proposed as an extension to the CBPNARM algorithm. WisRule produces both positive and negative association rules based on their frequency evaluated in a certain context (C), utility (U), time (T) and location (L). Rules that are valid in a given context, have high utility and are valid across multiple time intervals and locations become part of the final ruleset. The evaluation of a rule in these four dimensions is claimed as mining wisdom from the given data that is currently used as a hypothetical basis for a domain expert’s decision. WisRule is compared with the Apriori, PNARM and CBPNARM algorithms in terms of precision, recall, number of rules, average confidence, F-measure and execution time.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3