An Optimized Association Rules Mining Framework for Chinese Social Insurance Fund Data Auditing

Author:

Xiuguo Wu1ORCID,Shengyong Du1ORCID

Affiliation:

1. School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan 250014, China

Abstract

Association rules mining with the Chinese social insurance fund dataset can effectively discover different kinds of errors, irregularities, and illegal acts by providing auditors with relationships among the items and therefore improve auditing quality and efficiency. However, traditional positive and negative association rules (PNARs) mining algorithms inevitably produce too many meaningless or contradictory rules when these two types of rules are mined simultaneously, which brings a huge challenge to auditors retrieving decision information. Aimed to reduce the quantity of low-reliability PNARs without missing interesting rules, this paper first proposes an improved PNARs mining algorithm with minimum correlation and triple confidence threshold to control the mined rules number by narrowing the range of confidence settings. Then, a novel pruning algorithm based on the inclusion relation of the rule’s antecedent and consequent is given to remove those redundant rules. After that, the proposed optimized PNARs mining approach is applied to the Chinese social insurance fund dataset starting with audit features influence factors mining using the Hash table. The experimental results with different datasets show that the proposed framework not only can ensure effective and interesting rules extraction but also has better performance than traditional approaches in both accuracy and efficiency, reducing the number of redundant PNARs by over 70.1% with experimental datasets and average 78.5% with auditing data mining, respectively.

Funder

Natural Science Foundation of Shandong Province

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Human-Computer Interaction,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3