Mining layered technological information in scientific papers: A semi-supervised method

Author:

Wang Xiaoyu1,Zhai Yujia2,Lin Yuanhai3,Wang Fang4

Affiliation:

1. Department of Information Resource Management, Business School, Nankai University, P.R. China; CETC Big Data Research Institute Co., Ltd., P.R. China

2. Department of Information Resource Management, School of Management, Tianjin Normal University, P.R. China

3. Institute of Information Photonics Technology and College of Applied Sciences, Beijing University of Technology, P.R. China

4. Department of Information Resource Management, Business School, Nankai University, P.R. China

Abstract

Tech mining is the application of text mining tools to science and technology information resources. The ever-increasing volume of scientific outputs is a boom to technological innovation, but it also complicates efforts to obtain useful and concise information for problem solving. This challenge extends to tech mining, where the development of techniques compatible with big data is an urgent issue. This article introduces a semi-supervised method for extracting layered technological information from scientific papers in order to extend the reach of tech mining. Our method starts with several pre-set seed patterns used to extract candidate phrases by matching the dependency tree of each sentence. Then, after a series of judgements, phrases are divided into two categories: ‘main technique’ and ‘tech-component’. (A technique, for the purposes of this study, is a method or tool used in the article being analysed.) In order to generate new patterns for subsequent iterations, a weighted pattern learning method is also adopted. Finally, multiple iterations of the method are applied to extract technological information from each paper. A dataset from the field of optical switcher is used to verify the method’s effectiveness. Our findings are that (1) by two loops of extraction process in each iteration, our method realises the layered technological information extraction, which contains the ‘part–whole’ relationships between main techniques and tech-components; (2) the recall rate for main techniques is superior to the baseline after iterating 23 rounds; (3) when layering is disregarded, in the aspect of the precision and the volume of techniques, the new method is higher than that for the baseline; and (4) adjusting another two parameters can optimise the efficiency – however, the effect is neither pronounced nor straightforward.

Funder

Citation based Innovative Diffusion Model and Path Recognition

Community Structure Heterogeneity and Urban Governance in China Based on Large Survey Data

Research on the Organization and Mode of Modern Social Governance

Network Society Governance in China

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3