Developing a hybrid collaborative filtering recommendation system with opinion mining on purchase review

Author:

Yun Youdong1,Hooshyar Danial1,Jo Jaechoon1,Lim Heuiseok1

Affiliation:

1. Department of Computer Science and Engineering, Korea University, Korea

Abstract

The most commonly used algorithm in recommendation systems is collaborative filtering. However, despite its wide use, the prediction accuracy of this algorithm is unexceptional. Furthermore, whether quantitative data such as product rating or purchase history reflect users’ actual taste is questionable. In this article, we propose a method to utilise user review data extracted with opinion mining for product recommendation systems. To evaluate the proposed method, we perform product recommendation test on Amazon product data, with and without the additional opinion mining result on Amazon purchase review data. The performances of these two variants are compared by means of precision, recall, true positive recommendation (TPR) and false positive recommendation (FPR). In this comparison, a large improvement in prediction accuracy was observed when the opinion mining data were taken into account. Based on these results, we answer two main questions: ‘Why is collaborative filtering algorithm not effective?’ and ‘Do quantitative data such as product rating or purchase history reflect users’ actual tastes?’

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving the accuracy and diversity of personalized recommendation through a two-stage neighborhood selection;Information Technology and Management;2024-08-05

2. A novel hotel recommender system incorporating review sentiment and contextual information;International Journal of Data Science and Analytics;2024-07-23

3. Enhancing group recommender systems: A fusion of social tagging and collaborative filtering for cohesive recommendations;Systems Research and Behavioral Science;2024-02-14

4. Sentimental Analysis Based Movie Recommender System Using Collaborative Filtering Approach;2023 International Conference on Sustainable Emerging Innovations in Engineering and Technology (ICSEIET);2023-09-14

5. Design of Library Big Data Document Service System Based on Improved Genetic Algorithm;2023 International Conference on Telecommunications, Electronics and Informatics (ICTEI);2023-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3