Enhancing group recommender systems: A fusion of social tagging and collaborative filtering for cohesive recommendations

Author:

Wang Jian1,Kamran Asif2,Shahzad Fakhar3,Syed Nadeem Ahmad4

Affiliation:

1. College of Economics and Management Zhengzhou University of Light Industry Zhengzhou China

2. Faculty of Business Management and Study Nazeer Hussain University Karachi Pakistan

3. Research Institute of Business Analytics and Supply Chain Management, College of Management Shenzhen University Shenzhen China

4. Department of Business Administration Khadim Ali Shah Bukhari Institute of Technology Karachi Pakistan

Abstract

AbstractThis study examines the challenges and opportunities of using group recommendation systems in an information overload scenario. Social network recommendation systems are increasingly important because they deliver users customized choices. Most existing solutions are geared for single users, making it difficult to propose for a group with different interests. This paper analyses group recommendation systems and exposes their flaws. This study tested whether the suggested approach outperforms the one without tagging information in recall, precision, and user satisfaction. Empirical evidence indicates that the algorithm exhibits appropriate levels of reliability and accuracy compared to conventional methods. The proposed approach has the potential to substantially enhance the existing state of social network group recommendation systems, thereby facilitating users in their quest to identify and participate in groups that align with their preferences.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3