News events prediction using Markov logic networks

Author:

Dami Sina1,Barforoush Ahmad Abdollahzadeh2,Shirazi Hossein1

Affiliation:

1. Department of Information and Communication Technology (ICT), Malek-ashtar University of Technology, Iran

2. Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Iran

Abstract

Predicting future events from text data has been a controversial and much disputed topic in the field of text analytics. However, far too little attention has been paid to efficient prediction in textual environments. This study has aimed to develop a novel and efficient method for news event prediction. The proposed method is based on Markov logic networks (MLNs) framework, which enables us to concisely represent complex events by full expressivity of first-order logic (FOL), as well as to reason uncertain event with probabilities. In our framework, we first extract text news events via an event representation model at a semantic level and then transform them into web ontology language (OWL) as a posteriori knowledge. A set of domain-specific causal rules in FOL associated with weights were also fed into the system as a priori (common-sense) knowledge. Additionally, several large-scale ontologies including DBpedia, VerbNet and WordNet were used to model common-sense logic rules as contextual knowledge. Finally, all types of such knowledge were integrated into OWL for performing causal inference. The resulted OWL knowledge base is augmented by MLN, which uses weighted first-order formulas to represent probabilistic knowledge. Empirical evaluation of real news showed that our method of news event prediction was better than the baselines in terms of precision, coverage and diversity.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Reference56 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Aspect-Level Sentiment Analysis Based on LDA Topic Modeling;Journal of Information Systems and Telecommunication (JIST);2024-06-24

2. Developing a quality assessment model (QAM) using logical prediction: Binary validation;International Journal of Assessment Tools in Education;2024-06-20

3. Event Prediction in the Big Data Era;ACM Computing Surveys;2022-06-30

4. Recommender System Using LDA Topic Modeling Approach;SSRN Electronic Journal;2022

5. Identifying Events from Streams of RDF-Graphs Representing News and Social Media Messages;The Semantic Web: ESWC 2021 Satellite Events;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3