Event Prediction in the Big Data Era

Author:

Zhao Liang1ORCID

Affiliation:

1. Emory University, Atlanta, GA

Abstract

Events are occurrences in specific locations, time, and semantics that nontrivially impact either our society or the nature, such as earthquakes, civil unrest, system failures, pandemics, and crimes. It is highly desirable to be able to anticipate the occurrence of such events in advance to reduce the potential social upheaval and damage caused. Event prediction, which has traditionally been prohibitively challenging, is now becoming a viable option in the big data era and is thus experiencing rapid growth, also thanks to advances in high performance computers and new Artificial Intelligence techniques. There is a large amount of existing work that focuses on addressing the challenges involved, including heterogeneous multi-faceted outputs, complex (e.g., spatial, temporal, and semantic) dependencies, and streaming data feeds. Due to the strong interdisciplinary nature of event prediction problems, most existing event prediction methods were initially designed to deal with specific application domains, though the techniques and evaluation procedures utilized are usually generalizable across different domains. However, it is imperative yet difficult to cross-reference the techniques across different domains, given the absence of a comprehensive literature survey for event prediction. This article aims to provide a systematic and comprehensive survey of the technologies, applications, and evaluations of event prediction in the big data era. First, systematic categorization and summary of existing techniques are presented, which facilitate domain experts’ searches for suitable techniques and help model developers consolidate their research at the frontiers. Then, comprehensive categorization and summary of major application domains are provided to introduce wider applications to model developers to help them expand the impacts of their research. Evaluation metrics and procedures are summarized and standardized to unify the understanding of model performance among stakeholders, model developers, and domain experts in various application domains. Finally, open problems and future directions are discussed. Additional resources related to event prediction are included in the paper website: http://cs.emory.edu/∼lzhao41/projects/event_prediction_site.html.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Beyond Accuracy: Building Trustworthy Extreme Events Predictions Through Explainable Machine Learning;European Journal of Theoretical and Applied Sciences;2024-01-01

2. Detection of Uncertainty Events in the Brazilian Economic and Financial Time Series;Computational Economics;2023-10-15

3. A Framework for Context-Sensitive Prediction in Time Series - Feasibility Study for Data-Driven Simulation in Medicine;2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA);2023-10-09

4. Collaborative power fault localization method based on multi-source heterogeneous data;Proceedings of the 2023 6th International Conference on Big Data Technologies;2023-09-22

5. Context-aware Event Forecasting via Graph Disentanglement;Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2023-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3