Aroma Profile of Galangal Composed of Cinnamic Acid Derivatives and Their Structure-Odor Relationships

Author:

Hasegawa Toshio1,Hashimoto Momohiro1,Fujihara Takashi1,Yamada Hideo2

Affiliation:

1. Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Ohkubo, Sakura-ku, Saitama 338-8570, Japan

2. Yamada-matsu Co., Ltd., 164 Kageyukoji-cho, Kamigyo-ku, Kyoto 602-8014, Japan

Abstract

Cinnamic acid derivatives are important odorants due to their characteristic scent. Some fragrance materials, such as cinnamon bark, matsutake mushrooms, and Kaempferia galanga L. rhizome (galangal), contain several cinnamic acid derivatives as important odor constituents. The main odor constituent of galangal is ( E)-ethyl 4-methoxycinnamate, but the odor of this compound is different from that of galangal. We investigated the aroma profile of galangal using our previously described method that considers the intermolecular interactions of the odorant compounds with their receptors. Odorant compounds in galangal were extracted by hexane extraction, steam distillation, and headspace sampling. The odor of the hexane extract was different from that of the steam distillate and similar to that of galangal; therefore, we searched for the key compounds contributing to the aroma profile of galangal by separating the constituents of the hexane extract. A fraction with a galangal-like odor was obtained by bulb-to-bulb distillation of the hexane extract. The main component of this fraction was not ( E)-ethyl 4-methoxycinnamate, but rather ethyl cinnamate. These results indicate that ethyl cinnamate is more important in the aroma profile of galangal than ( E)-ethyl 4-methoxycinnamate. GC-MS analysis revealed that this fraction contained aromatic compounds, cyclic terpenes, and linear chain compounds in addition to ethyl cinnamate. We synthesized cinnamic acid derivatives and examined the importance of the odor expression of these cinnamic acid derivatives. Cinnamic acid derivatives lacking a p-methoxy group had a strong fruity odor. Replacement of the hydrogen atom at the para position with a methoxy group altered and weakened the odor. We found that a p-methoxy group in cinnamic acid derivatives plays an important role in the aroma profile of galangal.

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3