Affiliation:
1. Dipartimento di Farmacia, Università degli Studi di Salerno, Italy
2. Dipartimento di Scienze, Università della Basilicata, Italy
3. Giellepi S.p.A. Health Science, Italy
4. Dipartimento di Medicina Veterinaria e Produzioni Animali, Università di Napoli, Italy
5. Dipartimento di Farmacia, Università di Pisa, Italy
Abstract
Astragalus membranaceus (Fish.) Bunge is a perennial herb distributed in the northern part of China, and its roots, namely, Hang qi, are included as a natural ingredient in dietary supplement formulations commonly used to treat different disorders such as respiratory infections, diabetes, and heart failure. The availability of a simple method for the determination of the quality of Astragalus herbal preparations could be a challenging issue for commercial purposes. In this study, a liquid chromatography–mass spectrometry (LC–MS)/MS based approach was used to characterize specialized metabolite recovery of 3 commercial hydroalcoholic extracts of A. membranaceus (AMG1, AMG2, AMG3) in addition to a hydroalcoholic extract of A. membranaceus root (AST). The hypoglycemic effect, cholinesterase inhibition, and antioxidant activities were also evaluated. Thirty-one compounds, of which 19 polyphenols and 12 saponins, were identified. The extracts were also quantified by using a sensitive and selective Q-Trap system for their content in flavonoids and astragalosides, selecting astragaloside I and IV as chemical markers. From our results, AMG3 preparation (Axtragyl) was the most abundant in terms of both specialized classes of metabolites, showing a fingerprint similar to that of AST. Interestingly, tested enzyme inhibition ability of flavonoids, daidzein (11) and formononetin (19), reported a higher α-glucosidase inhibition in comparison with that of acarbose used as positive control. The in silico study clarified the interactions among the molecules and the importance of having a free hydroxy group. Moreover, Axtragyl was able to exert protective effects in Caco-2 cells treated with hydrogen peroxide, confirming its ability as a potential protective agent in intestinal injury.
Subject
Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine