Efficient Counter-Current Chromatographic Isolation and Structural Identification of Two New Cinnamic Acids from Echinacea Purpurea

Author:

Lu Ying12,Li JiaYin12,Li MiLu2,Hu Xia2,Tan Jun1,Liu Zhong Hua12

Affiliation:

1. National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals & Hunan Province Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan, P.R. China 410128

2. College of Horticulture and Gardening, Hunan Agricultural University, Changsha, Hunan, P.R. China 410128

Abstract

Two new cinnamic acids, 2- O-caffeoyl-3- O-isoferuloyltartaric (3), and 2, 3-di- O-isoferuloyltartaric acid (5), along with three known caffeic acids, cichoric acid (1), 2- O-caffeoyl-3- O-feruloyltartaric acid (2) and 2- O- caffeoyl-3- O-p-coumaroyltartaric acid (4), have been successfully isolated and purified from Echinacea purpurea. In this study, we investigated an efficient method for the preparative isolation and purification of cinnamic acids from E. purpurea by high-speed counter-current chromatography (HSCCC). The separation was performed using a two-phase solvent composed of n-hexane-ethyl-acetate-methanol-0.5% aqueous acetic acid (1:3:1:4, v/v). The upper phase was used as the stationary phase and the lower phase as the mobile phase, with a flow rate of 1.6 mL/min. From 250 mg of crude extracts, 65.1 mg of 1, 8.3 mg of 2, 4.0 mg of 3, 4.5 mg of 4, and 4.3 mg of 5 were isolated in one-step, with purities of 98.5%, 97.7%, 94.6%, 94.3%, and 98.6%, respectively, as evaluated by HPLC-DAD. The chemical structures were identified by electro spray ionization mass spectrometry (ESI-MS) and one- and two-dimensional NMR spectra. HSCCC was very efficient for the separation and purification of the cinnamic acids from E. purpurea.

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3