Probing the Mechanisms of Chronotype Using Quantitative Modeling

Author:

Phillips A. J. K.1,Chen P. Y.2,Robinson P. A.2

Affiliation:

1. School of Physics, University of Sydney, New South Wales, Australia, , Division of Sleep Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, Brain Dynamics Center, Sydney Medical School-Western, University of Sydney, Westmead, New South Wales, Australia

2. School of Physics, University of Sydney, New South Wales, Australia, Brain Dynamics Center, Sydney Medical School-Western, University of Sydney, Westmead, New South Wales, Australia

Abstract

The physiological mechanisms underlying interindividual differences in chronotype have yet to be established, although evidence suggests both circadian and homeostatic processes are involved. A physiologically based model is developed by combining models of the sleep-wake switch and circadian pacemaker, providing a means of examining how interactions between these systems affect chronotype. Specifically, chronotype is shown to depend on the relative influences of homeostatic and circadian drives, with a stronger homeostatic drive causing morningness. Changes to intrinsic circadian and homeostatic properties, including homeostatic clearance and production rates, and circadian period and amplitude, are also shown to affect chronotype. These results provide a framework for explaining several experimentally observed phenomena, including age-related morningness, adolescent eveningness, and familial advanced and delayed sleep-phase disorders. Additionally, experimental studies have shown that healthy adults on the extremes of the morningness-eveningness spectrum fall into two subtypes: those whose circadian phase markers are unaffected by chronotype, and those whose circadian phase markers track their chronotype. The model demonstrates that this spectrum likely results from interindividual differences in homeostatic kinetics in the first group, and differences in circadian period in the second group. Physiologically based modeling can thus guide diagnosis of sleep pathologies.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3