Improving adjustment to daylight saving time transitions with light

Author:

Xu Mengzhu,Papatsimpa Charikleia,Schlangen Luc,Linnartz Jean-Paul

Abstract

AbstractDaylight saving time (DST) is currently utilized in many countries with the rationale that it enhances the alignment between daylight hours and activity peaks in the population. The act of transitioning into and out of DST introduces disruptions to the circadian rhythm, thereby impacting sleep and overall health. Despite the substantial number of individuals affected, the consequences of this circadian disruption have often been overlooked. Here, we employ a mathematical model of the human circadian pacemaker to elucidate how the biological clock interacts with daytime and evening exposures to both natural and electrical light. This interaction plays a crucial role in determining the adaptation to the 1 hour time zone shift imposed by the transition to or from DST. In global discussions about DST, there is a prevailing assumption that individuals easily adjust to DST transitions despite a few studies indicating that the human circadian system requires several days to fully adjust to a DST transition. Our study highlights that evening light exposure changes can be the main driving force for re-entrainment, with chronobiological models predicting that people with longer intrinsic period (i.e. later chronotype) entrain more slowly to transitions to or from DST as compared to people with a shorter intrinsic period (earlier chronotype). Moreover, the model forecasts large inter-individual differences in the adaptation speed, in particular during the spring transition. The predictions derived from our model offer circadian biology-based recommendations for light exposure strategies that facilitate a more rapid adaptation to DST-related transitions or travel across a single time zone. As such, our study contributes valuable insights to the ongoing discourse on DST and its implications for human circadian rhythms.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3