Photic Entrainment of the Mammalian Rhythm in Melatonin Production

Author:

Illnerová Helena1,Sumová Alena1

Affiliation:

1. Institute of Physiology, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic

Abstract

This review summarizes studies on the photic entrainment of the circadian rhythm in the rat pineal melatonin production, namely of the rhythm in N-acetyltransferase (NAT) activity, and compares the NAT rhythm resetting with preliminary results on the resetting of an intrinsic rhythmicity in the suprachiasmatic nucleus (SCN) of the hypothalamus, namely with the entrainment of the rhythm in the light-induced c- fos gene expression. Phase delaying of the NAT rhythm after various light stimuli proceeds within 1 day with almost no transients, whereas during phase advancing of the rhythm only the morning NAT decline is phase advanced within 1 day and the evening rise phase shifts through transients. A light stimulus encompassing the middle of the night may phase delay the evening NAT rise, phase advance the morning decline, compress the rhythm waveform, and eventually lower its amplitude. Similarly, a long photoperiod compresses the NAT rhythm waveform. The magnitude of phase shifts of the NAT rhythm, as well as their direction, depends on a previous photoperiod. Phase shifts of the evening rise in c- fos gene photoinduction in the SCN and of the morning decline are similar to those of the pineal NAT rhythm after all light stimuli studied so far. The data indicate that the resetting of the rhythm in melatonin production in the rat pineal gland reflects changes in the SCN functional state and suggest that the underlying SCN pacemaking system is complex.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3