Roles of Direct Photoreception and the Internal Circadian Oscillator in the Regulation of Melatonin Secretion in the Pineal Organ of the Domestic Turkey: A Novel In Vitro Clock and Calendar Model

Author:

Prusik Magdalena,Lewczuk BogdanORCID

Abstract

The regulation of melatonin secretion in the avian pineal organ is highly complex and shows prominent interspecies differences. The aim of this study was to determine the roles of direct photoreception and the internal oscillator in the regulation of melatonin secretion in the pineal organ of the domestic turkey. The pineal organs were collected from 12-, 13- and 14-week-old female turkeys reared under a 12 L:12 D cycle with the photophase from 07.00 to 19.00, and were incubated in superfusion culture for 3–6 days. The cultures were subjected to different light conditions including 12 L:12 D cycles with photophases between 07.00 and 19.00, 13.00 and 01.00 or 01.00 and 13.00, a reversed cycle 12 D:12 L, cycles with long (16 L:8 D) and short (8 L:16 D) photophases, and continuous darkness or illumination. The pineal organs were also exposed to light pulses of variable duration during incubation in darkness or to periods of darkness during the photophase. The secretion of melatonin was determined by direct radioimmunoassay. The turkey pineal organs secreted melatonin in a well-entrained diurnal rhythm with a very high amplitude. Direct photoreception as an independently acting mechanism was able to ensure quick and precise adaptation of the melatonin secretion rhythm to changes in light-dark conditions. The pineal organs secreted melatonin in circadian rhythms during incubation in continuous darkness or illumination. The endogenous oscillator of turkey pinealocytes was able to acquire and store information about the light-dark cycle and then to generate the circadian rhythm of melatonin secretion in continuous darkness according to the stored data. The obtained data suggest that the turkey pineal gland is highly autonomous in the generation and regulation of the melatonin secretion rhythm. They also demonstrate that the turkey pineal organ in superfusion culture is a valuable model for chronobiological studies, providing a highly precise clock and calendar. This system has several features which make it an attractive alternative to other avian pineal glands for circadian studies.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3