Affiliation:
1. Max Planck Institute für Ornithologie, Erling-Andechs, Germany, Department of Biology, Texas A & M University, BSBW 027, College Station, TX 77843
2. Max Planck Institute für Ornithologie, Erling-Andechs, Germany
Abstract
When confined to a cage, migratory songbirds exhibit nocturnal migratory restlessness (also called Zugunruhe) during the spring and autumn migratory periods, even though these birds are exclusively diurnal during the remainder of the year. Zugunruhe, which has been demonstrated to be under the direct control of a circannual timer, is characterized by a stereotypic “wing-whirring” behavior while the bird is perched. To elucidate the role played by the circadian system in the regulation of Zugunruhe, the authors studied the activity of garden warblers ( Sylvia borin), long-distance nocturnal migrants, under skeleton photoperiods of different lengths and under constant dim light. In 11.5D:1L:10.5D:1L skeleton photoperiods, the authors found that Zugunruhe free-ran in a substantial proportion of birds, while their normal daily activities (e.g., feeding and preening) remained synchronized to 24 h. Some birds expressing Zugunruhe under constant dim light continued to show 2 distinct bouts of activity: one corresponding to daily activities, the other to wing-whirring. In some cases, these 2 bouts crossed while free-running with different periods. Birds expressing Zugunruhe also had significantly longer free-running periods than birds that did not. The study data suggest that the seasonal appearance of Zugunruhe is the result of the interactions of at least 2 circadian oscillators and that it is the phase relationship of these 2 oscillators that determines when nocturnal migratory restlessness is expressed. Furthermore, these data are consistent with the previously proposed internal coincidence hypothesis as a model for the ontogeny of circannual rhythms.
Subject
Physiology (medical),Physiology
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献