Development of a synthetic human thigh impact surrogate for sports personal protective equipment testing

Author:

Payne Thomas1,Mitchell Séan1,Halkon Ben1,Bibb Richard2,Waters Mark3

Affiliation:

1. Sports Technology Institute, Loughborough University, Loughborough, UK

2. Loughborough Design School, Loughborough University, Loughborough, UK

3. School of Dentistry, Cardiff University, Cardiff, UK

Abstract

Synthetic impact surrogates are widely used in the sporting goods industry in the evaluation of personal protective equipment. Existing surrogates, exemplified by those used in safety standards, have many shortcomings, primarily relating to their mass, stiffness, geometries and levels of constraint which limit their biofidelity and subsequent usefulness in personal protective equipment evaluations. In sports, absence from competition is a primary severity measure for injuries; consequently, blunt trauma injuries, such as contusions and lacerations, become pertinent and serious concerns. It is important, therefore, that synthetic surrogates provide an adequate description of these soft tissues to effectively evaluate injury risk. A novel, multi-material human thigh surrogate has been presented with consideration to the tissue structures, geometries and simulant materials used. This study presents the detailed development stages undertaken to fabricate a multi-material synthetic soft tissue surrogate with skin, subcutaneous adipose and muscle tissue components. The resultant surrogate demonstrates the successful use of sequential moulding techniques to construct a full-scale anatomical human impact surrogate which can be used in personal protective equipment testing.

Publisher

SAGE Publications

Subject

General Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Body Part Surrogates for Medicine, Comfort and Safety Applications;Advances in 3D Printing;2023-05-03

2. Finite element model to simulate impact on a soft tissue simulant;Sports Engineering;2023-03-02

3. Repeatability of a bending stiffness test for snowboarding wrist protectors;Sports Engineering;2023-01-16

4. Auxetic Materials for Personal Protection: A Review;physica status solidi (b);2022-10-19

5. A destructible headform for the assessment of sports impacts;Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology;2021-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3