Abstract
AbstractA finite element model of an impact test on a soft tissue simulant, used as part of a shoulder surrogate, was developed in Ansys© LS-DYNA®. The surrogate consisted of a metal hemicylindrical core, with a diameter of 75 mm, covered with a 15 mm thick relaxed muscle simulant. The muscle simulant consisted of a 14 mm thick layer of silicone covered with 1 mm thick chamois leather to represent skin. The material properties of the silicone were obtained via quasi-static compression testing (curve fit with hyperelastic models) and compressive stress relaxation testing (curve fit with a Prony series). Outputs of the finite element models were compared against experimental data from impact tests on the shoulder surrogate at energies of 4.9, 9.8 and 14.7 J. The accuracy of the finite element models was assessed using four parameters: peak impact force, maximum deformation, impact duration and impulse. A 5-parameter Mooney-Rivlin material model combined with a 2-term Prony series was found to be suitable for modelling the soft tissue simulant of the shoulder surrogate. This model had under 10% overall mean deviation from the experimental values for the four assessment parameters across the three impact energies. Overall, the model provided a repeatable test method that can be adapted to help predict injuries to skin tissue and the performance/efficacy of personal protective equipment.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine,Modeling and Simulation,Biomedical Engineering
Reference44 articles.
1. World Rugby (2019) Body padding performance specifications. https://www.world.rugby/the-game/player-welfare/equipment/specifications/body-padding
2. Shergold OA, Fleck NA, Radford D (2006) The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. Int J Impact Eng 32:1384–1402
3. Payne T, Mitchell S, Bibb R, Waters M (2015) The evaluation of new multi-material human soft tissue simulants for sports impact surrogates. J Mech Behav Biomed Mater 41:336–356
4. Annaidh AN, Destrade M, Ottenio M et al (2014) Strain rate effects on the failure characteristics of excised human skin. In: Proceedings of the 9th international conference on the mechanics of time dependent materials (MTL), Montréal, QC, Canada. pp 27–30
5. Payne T, Mitchell S, Halkon B, et al (2016) Development of a synthetic human thigh impact surrogate for sports personal protective equipment testing. Proc Inst Mech Eng Part P J Sport Eng Technol 230:5–16
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献