Predictive musculoskeletal simulation using optimal control: effects of added limb mass on energy cost and kinematics of walking and running

Author:

van den Bogert Antonie J1,Hupperets Maarten2,Schlarb Heiko2,Krabbe Berthold2

Affiliation:

1. Orchard Kinetics, USA

2. ait Sport Research Laboratory, adidas AG, Germany

Abstract

When designing sports equipment, it is often desirable to predict how certain design parameters will affect human performance. In many instances, this requires a consideration of human musculoskeletal mechanics and adaptive neuromuscular control. Current computational methods do not represent these mechanisms, and design optimization typically requires several iterations of prototyping and human testing. This paper introduces a computational method based on musculoskeletal modeling and optimal control, which has the capability to predict the effect of mechanical equipment properties on human performance. The underlying assumption is that users will adapt their neuromuscular control according to an optimality principle, which balances task performance with a minimization of muscular effort. The method was applied to the prediction of metabolic cost and limb kinematics while running and walking with weights attached to the body. A two-dimensional musculoskeletal model was used, with nine kinematic degrees of freedom and 16 muscles. The optimal control problem was solved for two walking speeds and two running speeds, and at each speed, with 200 g and 400 g masses placed at the thigh, knee, shank and foot. The model predicted an increase in energy expenditure that was proportional to the added mass and the effect was largest for a mass placed on the foot. Specifically, the model predicted an energy cost increase of 0.74% for each 100 g mass added to the foot during running at 3.60 m/s. The model also predicted that stride length would increase by several millimetres in the same condition, relative to the model without added mass. These predictions were consistent with previously published human studies. Peak force and activation remained the same in most muscles, but increased by 26% in the hamstrings and by 17% in the rectus femoris for running at 4.27 m/s with 400 g added mass at the foot, suggesting muscle-specific training effects. This work demonstrated that a musculoskeletal model with optimal control can predict the effect of mechanical devices on human performance, and could become a useful tool for design optimization in sports engineering. The theoretical background of predictive simulation also helps explain why human athletes have specific responses when exercising in an altered mechanical environment.

Publisher

SAGE Publications

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3