Do AIs know what the most important issue is? Using language models to code open-text social survey responses at scale

Author:

Mellon Jonathan1ORCID,Bailey Jack2ORCID,Scott Ralph3ORCID,Breckwoldt James2,Miori Marta2,Schmedeman Phillip1ORCID

Affiliation:

1. Department of Systems Engineering, West Point, West Point, NY, USA

2. Department of Politics, University of Manchester, Manchester, UK

3. School of Sociology, Politics and International Studies, University of Bristol, Bristol, UK

Abstract

Can artificial intelligence accurately label open-text survey responses? We compare the accuracy of six large language models (LLMs) using a few-shot approach, three supervised learning algorithms (SVM, DistilRoBERTa, and a neural network trained on BERT embeddings), and a second human coder on the task of categorizing “most important issue” responses from the British Election Study Internet Panel into 50 categories. For the scenario where a researcher lacks existing training data, the accuracy of the highest-performing LLM (Claude-1.3: 93.9%) neared human performance (94.7%) and exceeded the highest-performing supervised approach trained on 1000 randomly sampled cases (neural network: 93.5%). In a scenario where previous data has been labeled but a researcher wants to label novel text, the best LLM’s (Claude-1.3: 80.9%) few-shot performance is only slightly behind the human (88.6%) and exceeds the best supervised model trained on 576,000 cases (DistilRoBERTa: 77.8%). PaLM-2, Llama-2, and the SVM all performed substantially worse than the best LLMs and supervised models across all metrics and scenarios. Our results suggest that LLMs may allow for greater use of open-ended survey questions in the future.

Funder

Economic and Social Research Council

Publisher

SAGE Publications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3