A comparison of logistic regression models with alternative machine learning methods to predict the risk of in-hospital mortality in emergency medical admissions via external validation
Author:
Affiliation:
1. University of Bradford and Bradford Institute for Health Research, UK
2. Northern Lincolnshire and Goole Hospitals NHS Foundation Trust, UK
3. York Teaching Hospital NHS Foundation Trust, UK
Abstract
Funder
The Health Foundation
National Institute for Health Research (NIHR) Yorkshire and Humberside Patient Safety Translational Research Centre
Publisher
SAGE Publications
Subject
Health Informatics
Link
http://journals.sagepub.com/doi/pdf/10.1177/1460458218813600
Reference35 articles.
1. APACHE II
2. Mortality Probability Models (MPM II) Based on an International Cohort of Intensive Care Unit Patients
3. The Physiological and Operative Severity Score for the enUmeration of Mortality and morbidity (POSSUM)
4. Regression Modeling Strategies
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine learning-based prognostic model for 30-day mortality prediction in Sepsis-3;BMC Medical Informatics and Decision Making;2024-09-09
2. A comparative study of explainable ensemble learning and logistic regression for predicting in-hospital mortality in the emergency department;Scientific Reports;2024-02-10
3. Age in addition to RETTS triage priority substantially improves 3-day mortality prediction in emergency department patients: a multi-center cohort study;Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine;2023-10-18
4. Development and validation of a meta-learner for combining statistical and machine learning prediction models in individuals with depression;BMC Psychiatry;2022-05-16
5. Data Science Trends Relevant to Nursing Practice: A Rapid Review of the 2020 Literature;Applied Clinical Informatics;2022-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3