Impacts of building envelope design on indoor ozone exposures and health risks in urban environments

Author:

Ma Nan1ORCID,Hakkarainen Max1,Hou Miaomiao12,Aviv Dorit1,Braham William W.1

Affiliation:

1. Department of Architecture, University of Pennsylvania, Philadelphia, PA, United States

2. College of Architecture and Urban Planning, Tongji University, Shanghai, China

Abstract

Much of human exposure to ozone takes place indoors. However, few studies have focused on human ozone exposures in normally occupied residential houses in the U.S. urban environments. Only rare studies have explored the implication of building envelope design variables on outdoor ozone penetration. Our study reveals the extent to which outdoor ozone penetrates and persists in the occupied houses in one of the most ozone-polluted cities, as influenced by building characteristics, building geometry, envelope design variables, window conditions and urban meteorology conditions. Through a set of analysis and variable regressions, we found that (1) the ratios of indoor to outdoor ozone concentration (I/O) were higher with windows open (0.700 ± 0.13) than with the windows closed (0.53 ± 0.22); (2) the indoor ozone concentration is typically elevated when the outdoor ozone concentration is high; and (3) design variables such as exterior envelope finishes, wall surface area and window-to-wall ratio are reasonably effective predictors. Our results of health risk evaluation suggest that the observed levels of indoor ozone exposure could pose a considerable risk to human health. Further work is needed to discover how building envelopes can be designed, constructed and maintained to support occupant health.

Funder

University of Pennsylvania’s Kleinman Center for Energy Policy

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3